#### **Ministry of Education**



## The experimental test for the third secondary stage in (Algebra and solid Geometry) In the academic year 2014 - 2015

| ( | صفحتين | في | الاسئلة | ١ |
|---|--------|----|---------|---|
| • |        | 5  |         | , |

يسمح باستخدام الالة الحاسبة

#### First: Answer one of the following two questions:

| First question: | Choose the | correct | answer | from | the | given | once: |
|-----------------|------------|---------|--------|------|-----|-------|-------|
|-----------------|------------|---------|--------|------|-----|-------|-------|

| First ( | questi                                                                                                         | i <u>on:</u> Choose                                              | e the d | correct answ      | er fro | om the given             | once   | <i>:</i>                          |
|---------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------|-------------------|--------|--------------------------|--------|-----------------------------------|
| (1)     | 15 $c_4$                                                                                                       | + 15 <i>c</i> <sub>5</sub> + 16                                  | $c_6 =$ |                   |        |                          |        |                                   |
|         | (a)                                                                                                            | 16 <i>c</i> <sub>5</sub>                                         | (b)     | 16 c <sub>6</sub> | (c)    | 17 <i>c</i> <sub>5</sub> | (d)    | 17 c <sub>6</sub>                 |
| (2)     | If $\omega$ is one of the roots of the equation $x^3=1$ , then one of the roots of the equation $(x-1)^3=1$ is |                                                                  |         |                   |        |                          |        |                                   |
|         | (a)                                                                                                            | ω                                                                | (b)     | $\omega$ -1       | (c)    | $\omega$ + 1             | (d)    | 1                                 |
| (3)     | The two straight lines that not included in the same plane are                                                 |                                                                  |         |                   |        |                          |        |                                   |
|         | (a)                                                                                                            | Parallel                                                         | (b)     | Intersected       | (c)    | Skew                     | (d)    | perpendicular                     |
| (4)     |                                                                                                                | edge length<br>nid equals                                        |         | •                 | ar pyr | amid is 3 cm, th         | en th  | e height of the                   |
|         | (a)                                                                                                            | $\sqrt{2}$                                                       | (b)     | 3                 | (c)    | 6                        | (d)    | $\sqrt{6}$                        |
| (5)     |                                                                                                                | CDA <sup>/</sup> B <sup>/</sup> C <sup>/</sup> D <sup>/</sup> is | s a cub | e , then the m    | easur  | e of the dihedra         | al ang | le (A- $\overrightarrow{DD}'$ -B) |
|         | (a)                                                                                                            | 90°                                                              | (b)     | 30°               | (c)    | 45°                      | (d)    | 60°                               |
| (6)     | The number of planes passing through a straight line and a point not belong to this straight line is           |                                                                  |         |                   |        |                          |        |                                   |
|         | (a) (                                                                                                          | One plane                                                        | (b)     | Two planes        | (c)    | Three planes             | (d)    | Infinite number of planes         |

# Second question: complete the following statements to be correct:

1) 
$$\frac{7+4\omega}{7\omega^2+4} + \frac{5-3\omega^2}{5\omega-3} = \dots$$
2) If  $(n-4)$   $p_r \times (6-n)$   $c_r = 1$ , then  $n-r = \dots$ 
3) If a straight line is drawn inclined to a plane and perpendicular

- 3) If a straight line is drawn inclined to a plane and perpendicular to the straight line lie in this plane ,then the projection of the inclined straight line to the plane will be ......
- 4) If the diagonal length of a cube equals 6 cm, then the length of its edge equals .....cm
- 5) If a straight line is drawn perpendicular to two intersected straight lines from their point of intersection, then it will be .......
- 6) The two planes included three non collinear points are ......

باقى الاسئلة في الصفحة التالية

## Second: Answer the following questions:

### **Third question:**

- a) Without expanding the determinate ,Prove that :  $\begin{vmatrix} bc & a^2 & a^2 \\ b^2 & ca & b^2 \\ c^2 & c^2 & ab \end{vmatrix} = \begin{vmatrix} ac & bc & ab \\ bc & ab & ac \\ ab & ac & bc \end{vmatrix}$
- b) If Z is a complex number where,  $Z + 2 = i \ (Z 2)$  find Z in the triangular form then determine the square roots of Z in the exponential form .

# Fourth question:

- a) Use crammer's method to find the solution set of the following system of equations X + Y + Z = 3, X Y + Z = 1 and X + Y 2Z = 0
- b) In the expand of  $(X^3 + \frac{5}{X})^n$  if the seventh term is free of X ,find the value of n Then, find the ratio between the sixth term and the middle term when X = -2

## Fifth question:

- a)  $\overrightarrow{BC}$  is a straight line lie in the same plane of the circle M and touch it at A where,  $A \in \overline{BC}$ ,  $\overrightarrow{MN} \perp$  the plane of the circle.
  - 1- Prove that : The plane NBC  $\perp$  The plane AMN
  - 2- If the length of the radius of the circle equals 5cm , MN =  $5\sqrt{3}$  cm , find the measure of the angle ( N  $\overrightarrow{BC}$  M )
- b) MABC is a triangular pyramid, a plane X intersects the edges  $\overline{MA}$ ,  $\overline{MB}$  and  $\overline{MC}$  at D, E and F respectively, where:  $\frac{MD}{DA} = \frac{ME}{EB} = \frac{MF}{FC} = \frac{1}{3}$ .
  - 1- Prove that: The plane X // the plane ABC.
  - 2- If  $N \in \overline{BC}$ ,  $\overline{MN}$  is drawn to intersect  $\overline{EF}$  at H. Prove that: 1)  $\overline{DH}$  // $\overline{AN}$  2) AN = 4 DH